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Algorithm Analysis 

Outline: 
 In this topic, we will examine code to 

determine the run time of various 
operations. 

 We will calculate the run times of: 
– Operators  +, -, =, +=, ++, etc. 

– Control statements if, for, while, do-while, switch 

– Functions 
– Recursive functions 

 



Motivation 
 The goal of algorithm analysis is to take a 

block of code and determine the asymptotic 
run time or asymptotic memory requirements 
based on various parameters 
– Given an array of size n: 

• Selection sort requires Θ(n2) time  
• Merge sort, quick sort, and heap sort all  
   require Θ(n ln(n)) time 

– However: 
• Merge sort requires  Θ(n) additional memory  
• Quick sort requires  Θ(ln(n)) additional memory 
• Heap sort requires  Θ(1) memory  

 
 
 

 



Motivation 

 To properly investigate the determination 
of run times asymptotically: 
– We will begin with machine instructions 
– Discuss operations 
– Control statements 

• Conditional statements and loops 

– Functions 
– Recursive functions 



Operators 
 Because each machine instruction can be 

executed in a fixed number of cycles, we may 
assume each operation requires a fixed number of 
cycles 
– The time required for any operator is Θ(1)  including: 

• Retrieving/storing variables from memory 
• Variable assignment    = 
• Integer operations    + - * / % ++ -- 
• Logical operations    && || ! 
• Bitwise operations    & | ^ ~ 
• Relational operations    == != < <= => > 
• Memory allocation and deallocation  new delete 

 
 



Blocks of Operations 

 Each operation runs in Θ(1) time and 
therefore any fixed number 
of operations also run in Θ(1) time, for 
example: 

// Swap variables a and b 
int tmp = a; 
a = b; 
b = tmp; 
 
 



Blocks in Sequence 
 Suppose you have now analyzed a number of blocks of code run in sequence 

 
template <typename T> 
void update_capacity( int delta ) { 
 T *array_old = array; 
 int capacity_old = array_capacity; 

array_capacity += delta; 
 array = new T[array_capacity]; 
 
 for ( int i = 0; i < capacity_old; ++i ) { 
  array[i] = array_old[i]; 
 } 
 
 delete[] array_old; 
} 
 

 To calculate the total run time, add the entries:  Θ(1 + n + 1) = Θ(n) 
 

Θ(1) 

Θ(n) 

Θ(1)  



Blocks in Sequence 
 Other examples include: 

– Run three blocks of code which are Θ(1), Θ(n2), and Θ(n) 
  Total run time Θ(1 + n2 + n) = Θ(n2) 
– Run two blocks of code which are Θ(n ln(n)), and Θ(n1.5) 
  Total run time Θ(n ln(n) + n1.5) = Θ(n1.5) 

 
 
 
 
 

 
– When considering a sum, take the dominant term 



Control Statements 
 Next we will look at the following control statements 
 
 These are statements which potentially alter the 

execution of instructions 
– Conditional statements 

 if, switch 
– Condition-controlled loops 

 for, while, do-while 
– Count-controlled loops 

 for i from 1 to 10 do ... end do;        
– Collection-controlled loops 

 foreach ( int i in array ) { ... }      // C# 
 
 



Control Statements 

 Given any collection of nested control 
statements, it is always necessary to work 
inside out 
– Determine the run times of the inner-most 

statements and work your way out 
 



Control Statements 
 Given 

if ( condition ) { 
    // true body 
} else { 
    // false body 
} 

 
 The run time of a conditional statement is: 

– the run time of the condition (the test), plus 
– the run time of the body which is run 

 
 In most cases, the run time of the condition is Θ(1) 



Control Statements 

 In some cases, it is easy to determine 
which statement must be run: 
 

  int factorial ( int n ) { 
   if ( n == 0 ) { 
    return 1; 
   } else { 
    return n * factorial ( n – 1 ); 
   } 
  } 



Control Statements 
 In others, it is less obvious 

– Find the maximum entry in an array: 
 

  int find_max( int *array, int n ) { 
      max = array[0]; 
 
      for ( int i = 1; i < n; ++i ) { 
          if ( array[i] > max ) { 
              max = array[i]; 
          } 
      } 
 
      return max; 
  } 



Condition-controlled Loops 

 The for loop is a condition controlled 
statement: 

  for ( int i = 0; i < N; ++i ) { 
   // ... 
  } 

 is identical to 
  int i = 0;   // initialization 
  while ( i < N ) {  // condition 
      // ... 
      ++i;   // increment 
  } 
 



Condition-controlled Loops 

 The initialization, condition, and increment 
usually are single statements running in 
Θ(1) 

 
  for ( int i = 0; i < N; ++i ) { 
   // ... 
  } 

  



Condition-controlled Loops 
 The initialization, condition, and increment 

statements are usually Θ(1) 
 
 For example, 
     for ( int i = 0; i < n; ++i ) { 
         // ... 
     } 

 
 Assuming there are no break or return 

statements in the loop, 
the run time is Ω(n) 



Condition-controlled Loops 
 If the body does not depend on the 

variable (in this example, i), then the run 
time of  

     for ( int i = 0; i < n; ++i ) { 
         // code which is Theta(f(n)) 
     } 

 is Θ(n f(n)) 
 
 If the body is O(f(n)), then the run time of 

the loop is O(n f(n)) 



Condition-controlled Loops 

 For example, 
     int sum = 0;  
     for ( int i = 0; i < n; ++i ) { 
         sum += 1;   //  Theta(1) 
     } 

 
 This code has run time 
  Θ(n·1) = Θ(n) 
 



Condition-controlled Loops 

 Another example example, 
       int sum = 0;  
       for ( int i = 0; i < n; ++i ) {  
           for ( int j = 0; j < n; ++j ) { 
               sum += 1;     Theta(1) 
           } 
       } 

 The previous example showed that the 
inner loop is Θ(n), thus the outer loop is 

  Θ(n·n) = Θ(n2) 



Analysis of Repetition Statements 

 Suppose with each loop, we use a linear 
search an array of size m: 

       for ( int i = 0; i < n; ++i ) {  
      // search through an array of size m 
      // O( m ); 
       } 

 
 The inner loop is O(m) and thus the outer 

loop is 
    O(n m)  



Conditional Statements 

 Consider this example 
 

void Disjoint_sets::clear() { 
    if ( sets == n ) { 
        return; 
    } 
 
    max_height = 0; 
    num_disjoint_sets = n; 
 
    for ( int i = 0; i < n; ++i ) { 
        parent[i] = i; 
        tree_height[i] = 0; 
    } 
}  

Θ(n) 

Θ(1) 

Θ(1) 




Θ

=Θ
=

otherwise)(
)1(

)(Tclear n
nsets

n
Θ(1) 



Analysis of Repetition Statements 

 If the body does depends on the variable 
(in this example, i), then the run time of  

     for ( int i = 0; i < n; ++i ) { 
         // code which is Theta(f(i,n)) 
     } 

 is                                     and if the body is 
 
O(f(i, n)), the result is 
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Analysis of Repetition Statements 

 For example, 
      int sum = 0;  
      for ( int i = 0; i < n; ++i ) { 
          for ( int j = 0; j < i; ++j ) { 
              sum += i + j; 
          } 
      } 

 
 The inner loop is O(1 + i(1 + 1) ) = Θ(i) hence the 

outer is 
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Analysis of Repetition Statements 

 As another example: 
       int sum = 0;  
       for ( int i = 0; i < n; ++i ) { 
           for ( int j = 0; j < i; ++j ) { 
               for ( int k = 0; k < j; ++k ) { 
                   sum += i + j + k; 
               } 
           } 
       } 

 
 From inside to out: 

  Θ(1) 
  Θ(j) 
  Θ(i2) 
  Θ(n3) 



Control Statements 

 Switch statements appear to be nested if 
statements: 

 

 switch( i ) { 
  case 1:   /* do stuff */ break; 
  case 2:   /* do other stuff */ break; 
  case 3:   /* do even more stuff */ break; 
  case 4:   /* well, do stuff */ break; 
  case 5:   /* tired yet? */ break; 
  default:  /* do default stuff */ 
 } 



Control Statements 

 Thus, a switch statement would appear to 
run in O(n) time where n is the number of 
cases, the same as nested if statements 
– Why then not use: 

 

  if ( i == 1 ) { /* do stuff */ } 
  else if ( i == 2 ) { /* do other stuff */ } 
  else if ( i == 3 ) { /* do even more stuff */ } 
  else if ( i == 4 ) { /* well, do stuff */ } 
  else if ( i == 5 ) { /* tired yet? */ } 
  else { /* do default stuff */ } 



Serial Statements 
 Suppose we run one block of code followed by 

another block of code 
 
 Such code is said to be run serially 
 
 If the first block of code is O(f(n)) and the second 

is O(g(n)), then the run time of two blocks of code 
is 
    O( f(n) + g(n) ) 

 which usually (for algorithms not including function 
calls) simplifies to one or the other 



Serial Statements 

 Consider the following two problems: 
– search through a random list of size n to find 

the maximum entry, and 
– search through a random list of size n to find if 

it contains a particular entry 
 
 What is the proper means of describing 

the run time of these two algorithms? 



Serial Statements 

 Searching for the maximum entry requires 
that each element in the array be 
examined, thus, it must run in Θ(n) time 

 
 Searching for a particular entry may end 

earlier:  for example, the first entry we are 
searching for may be the one we are 
looking for, thus, it runs in O(n) time 



Serial Statements 
 Therefore: 

– if the leading term is big-Θ, then the result must 
be big-Θ, otherwise 

– if the leading term is big-O, we can say the result 
is big-O   

 
 For example, 

  O(n) + O(n2) + O(n4) = O(n + n2 + n4) = O(n4) 
  O(n) + Θ(n2) = Θ(n2) 
  O(n2) + Θ(n) = O(n2) 
  O(n2) + Θ(n2) = Θ(n2) 



Functions 

 A function (or subroutine) is code which 
has been separated out, either to: 
– and repeated operations 

• e.g., mathematical functions 
– group related tasks 

• e.g., initialization 
 



Functions 

 Because a subroutine (function) can be 
called from anywhere, we must: 
– prepare the appropriate environment 
– deal with arguments (parameters) 
– jump to the subroutine 
– execute the subroutine 
– deal with the return value 
– clean up 



Functions 

 Fortunately, this is such a common task 
that all modern processors have 
instructions that perform most of these 
steps in one instruction 

 
 Thus, we will assume that the overhead 

required to make a function call and to 
return is Θ(1)  



Functions 

 Because any function requires the 
overhead of a function call and return, we 
will always assume that 

  Tf = Ω(1) 
 
 That is, it is impossible for any function call 

to have a zero run time 



Functions 
 Thus, given a function f(n) (the run time of 

which depends on n) we will associate the 
run time of f(n) by some function Tf(n) 
– We may write this to T(n) 

 
 Because the run time of any function is at 

least O(1), we will include the time 
required to both call and return from the 
function in the run time 
 



Functions 
 Consider this function: 
  void Disjoint_sets::set_union( int m, int n ) { 
   m = find( m ); 
   n = find( n ); 
 
   if ( m == n ) { 
    return; 
   } 
 
   --num_disjoint_sets; 
 
   if ( tree_height[m] >= tree_height[n] ) { 
       parent[n] = m; 
 
       if ( tree_height[m] == tree_height[n] ) { 
           ++( tree_height[m] ); 
           max_height = std::max( max_height, tree_height[m] ); 
       } 
   } else { 
       parent[m] = n; 
   } 
  }  

Θ(1) 

2Tfind 

Tset_union= 2Tfind + Θ(1) 



Recursive Functions 

 A function is relatively simple (and boring) 
if it simply performs operations and calls 
other functions 

  
 Most interesting functions designed to 

solve problems usually end up calling 
themselves 
– Such a function is said to be recursive 



Recursive Functions 

 As an example, we could implement the 
factorial function recursively: 

 
  int factorial( int n ) { 
      if ( n <= 1 ) { 
          return 1; 
      } else { 
          return n * factorial( n – 1 ); 
      } 
  } 

(1)Θ

T ( 1) (1)n − + Θ!



Recursive Functions 
 Thus, we may analyze the run time of this 

function as follows: 
 
 

 
 We don’t have to worry about the time of 

the conditional (Θ(1)) nor is there a 
probability involved with the conditional 
statement 
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Recursive Functions 
 The analysis of the run time of this function 

yields a recurrence relation: 
T!(n) = T!(n – 1) + Θ(1)         T!(1) = Θ(1) 

  
 This recurrence relation has Landau 

symbols… 
– Replace each Landau symbol with a 

representative function: 
 

T!(n) = T!(n – 1) + 1         T!(1) = 1 



Recursive Functions 
 Thus, to find the run time of the factorial 

function, we need to solve 
 T!(n) = T!(n – 1) + 1         T!(1) = 1 

  
 
  solve {T(n) = T(n – 1) + 1, T(1) = 1} 

n   

 
 Thus, T!(n) = Θ(n) 



Recursive Functions 

We can examine the first few steps: 
           T!(n) = T!(n – 1) + 1 
   = T!(n – 2) + 1 + 1 = T!(n – 2) + 2 
   = T!(n – 3) + 3 

  
 From this, we see a pattern: 

                T!(n) = T!(n – k) + k 
 



Recursive Functions 

 If k = n – 1 then 
                    T!(n) = T!(n – (n – 1)) + n – 1 
    = T!(1) + n – 1 
    = 1 + n – 1 = n 

  

 Thus, T!(n) = Θ(n) 



Recursive Functions 

 Analyzing the function, we get: 
 



Recursive Functions 

 Thus, replacing each Landau symbol with 
a representative, we are required to solve 
the recurrence relation 

  T(n) = T(n – 1) + n        T(1) = 1 
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Recursive Functions 

 Consequently, the sorting routine has the run 
time 

    T(n) = Θ(n2) 
 To see this by hand, consider the following 
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Recursive Functions 

 Consider, instead, a binary search of a 
sorted list: 
– Check the middle entry 
– If we do not find it, check either the left- or 

right-hand side, as appropriate 
 
 Thus, T(n) = T((n – 1)/2) + Θ(1) 



Recursive Functions 
 Also, if n = 1, then T(1) = Θ(1) 
 
 Thus we have to solve: 

 
 

  
 Solving this can be difficult, in general, so we will 

consider only special values of n 
 
 Assume n = 2k – 1 where k is an integer 
 Then (n – 1)/2 = (2k – 1 – 1)/2 = 2k – 1 – 1 
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Recursive Functions 

 For example, searching a list of size 31 
requires us to check the center 

  
 If it is not found, we must check one of the 

two halves, each of which is size 15 
   31 = 25 – 1 
   15 = 24 – 1 



Recursive Functions 

 Thus, we can write 
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Recursive Functions 

 Notice the pattern with one more step: 
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Recursive Functions 
 Thus, in general, we may deduce that after 

k – 1 steps: 
 
 
 

  
 
 because T(1) = 1 
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Recursive Functions 
 Thus, T(n) = k, but n = 2k – 1  
 Therefore k = lg(n + 1) 
 
 However, recall that f(n) = Θ(g(n)) if                         
for   
 
 
 
 
 
 
 Thus, T(n) = Θ(lg(n + 1)) = Θ (ln(n)) 
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Cases 
 As well as determining the run time of an 

algorithm, because the data may not be 
deterministic, we may be interested in: 
– Best-case run time 
– Average-case run time 
– Worst-case run time 

  
 In many cases, these will be significantly 

different 



Cases 
 Searching a list linearly is simple enough 
 
 We will count the number of comparisons 

– Best case: 
• The first element is the one we’re looking for: O(1) 

– Worst case: 
• The last element is the one we’re looking for, or it is not 

in the list: O(n) 
– Average case? 

• We need some information about the list... 



Cases 
 Assume the case we are looking for is in the list 

and equally likely distributed 
  
 If the list is of size n, then there is a 1/n chance of 

it being in the ith location 
  
 Thus, we sum 

 
 
 

 which is O(n) 
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